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ABSTRACT
A systematic approach is proposed to determine thresholds in freshwater flux perturbations related to abrupt changes
in the ocean’s thermohaline circulation. The typical problem considered is the response of a thermohaline driven flow
to a localized change, of specified strength and duration, in the surface freshwater flux. The initial transient response
due to the freshwater anomaly is considered as a finite amplitude perturbation. An estimate of this response can be
obtained by using ideas from dynamical systems theory. Central quantity to determine whether such a perturbation leads
to instability (i.e. a ‘collapsed’ state) is the sign of the tendency of a specific energy functional. The approach is first
illustrated with a simple box model and then shown to give good results in a global ocean general circulation model.

1. Introduction

The oxygen isotope records from the Greenland ice cores have
indicated that the climate system may undergo relatively rapid
changes. One of the most famous events is the Younger Dryas
cooling that occurred at about 12 ka during the transition from the
last glacial period to the Holocene. Another example is the abrupt
cooling event that occurred about 8000 yr ago, with an estimated
temperature difference of 3–6 ◦C over Greenland (Alley et al.
1997).

One of the potential physical mechanisms of these abrupt cool-
ing events is the change in the global ocean circulation due to
changes in salinity in the North Atlantic (Broecker 1997). The
present global thermohaline circulation is imagined as an ‘Ocean
Conveyor’, which is driven by lateral buoyancy gradients and lo-
calized sites of deep water formation, with a prominent role for
the North Atlantic (Schmitz 1995). There is a net sinking of deep
water of about 15 Sv in the North Atlantic, which is associated
with the formation of North Atlantic Deep Water (NADW). The
NADW can be traced down to 30 ◦S in the South Atlantic and
connects more southwards to water masses from the Southern
Ocean.

The Atlantic part of the global ocean circulation is sensitive
to the amplitude and spatial pattern of the surface buoyancy
forcing. The reason is that small buoyancy perturbations can be
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amplified through feedback mechanisms, in particular the salt-
advection feedback (Stommel 1961; Rooth 1982). A hypothesis
on the cause of the Younger Dryas cooling event is that it started
with a catastrophic input of freshwater through diversion of Lake
Agassiz from the Mississippi basin to the St Lawrence drainage
(Rooth 1982). This slowed down the Atlantic branch of the global
ocean circulation with a consequent decrease in northward heat
transport. A similar mechanism of sudden freshwater input may
have caused the Holocene cooling event about 8000 yr ago. A
central issue in this hypothesis is whether the changes in fresh-
water input in the past have had sufficient amplitude to cause the
reconstructed temperature changes on Greenland. This is one of
the reasons why the sensitivity of the ocean’s global circulation
has become one of the important issues in climate research.

In many models of the global ocean circulation, it appears
that several equilibrium states may exist under similar forcing
conditions. When the present ‘Conveyor’ is subjected to a quasi-
steady freshwater flux perturbation in the North Atlantic, even-
tually the circulation may collapse. In the resulting equilibrium
state, there is deep water formation in the Southern Ocean in-
stead of in the North Atlantic and the formation of the NADW
has ceased (Stocker et al. 1992; Rahmstorf 1995; Manabe and
Stouffer 1999).

Schiller et al. (1997) consider the response of the cou-
pled global LSG/ECHAM3 model to freshwater input into the
Labrador Sea. The freshwater input is increased linearly for
250 yr to a maximum of 0.625 Sv and then linearly reduced (over
the same time period) to zero. Initially, the NADW formation
was suppressed completely and a reversed Atlantic meridional

362 Tellus 56A (2004), 4



THRESHOLDS OF THE OCEAN’S THERMOHALINE CIRCULATION 363

overturning circulation was found. However, after the freshwater
input stopped, the original overturning circulation recovered and
no permanent shut down occurred.

Manabe and Stouffer (1995) investigate the effect of the lo-
cation of the freshwater input on the ocean circulation in the
coupled Geophysical Fluid Dynamics Laboratory (GFDL) cli-
mate model. When 0.1 Sv is discharged over an area in the
northern North Atlantic for a period of 500 yr, the overturn-
ing decreases from 18 Sv to about 4 Sv. Similar to the results
in Schiller et al. (1997), the circulation recovers in about 250 yr
after the anomalous forcing is removed. The circulation is less
sensitive to anomalous freshwater input in the subtropical North
Atlantic, decreasing only by about 4 Sv.

More recently, Vellinga et al. (2002) have investigated the re-
sponse of a coupled ocean–atmosphere model (HadCM3) to a
sudden negative change in surface salinity in the northern North
Atlantic. The overturning circulation is strongly reduced ini-
tially, but it recovers after about 120 yr. The salt transport by the
subtropical gyre appears a crucial factor in the recovery process
because it is able to restore the salt deficit caused by the initial
perturbation.

While there are only a few simulations with fully coupled gen-
eral circulation models, many more results have been obtained
with so-called intermediate complexity climate models. Fanning
and Weaver (1997) impose different sequences of run-off at four
different locations in the North Atlantic, based on reconstructed
conditions during the Younger Dryas. It appears that the circula-
tion is more vulnerable to a sequence of freshwater inputs than
to a single one and a fully collapsed state can be maintained even
if the anomalous forcing is removed.

In more idealized models, for example climate models where
the ocean model has a near two-dimensional dynamics (Stocker
et al. 1992; Ganopolsky et al. 2001), collapsed states as a result
of anomalous freshwater inputs have also been frequently found.
From these results, it appears that there exist thresholds in the
input of freshwater, such that the circulation totally collapses.
These thresholds depend in a complicated way on ocean model
parameters.

In a system that potentially has multiple equilibria, the re-
sponse to a finite amplitude perturbation induced by anomalous
forcing conditions is an intricate problem. In this paper, we de-
velop a systematic approach that aims to determine thresholds of
the thermohaline circulation with respect to freshwater perturba-
tions. These boundaries separate regimes where the thermohaline
circulation recovers or collapses after a finite-time perturbation
in the freshwater flux. The approach is based on elementary ideas
of bifurcation theory. It is illustrated first with a simple box model
and then applied to a global ocean circulation model.

2. Theory

The starting point is an equilibrium state of the ocean circulation,
say computed with a particular model. Many large-scale time-

mean equilibrium flows can be idealized as steady-state flows.
In fact, model–model comparison studies indicate that the large-
scale time-mean states closely correspond to the steady states
(Dijkstra 2000). The idealization of steady states allows a more
rigorous analysis of the parameter dependence of these flows. We
will refer to the problem of how the system responds to the tem-
porary change of the freshwater flux as the ‘thermohaline pulse
response’ (TPR) problem; it is specified in more detail below.

2.1. Thermohaline pulse response problem

The steady-state ocean flow is maintained by wind-stress forcing
and a surface heat and freshwater flux; we assume that these
forcing fields are given. The spatial pattern of the freshwater flux
field is indicated by F̄S(x) and its amplitude by γ F 0. Because of
salt conservation, the following integral condition∫

S
γ F0 F̄Sd2x = 0 (1)

holds where S is the ocean–atmosphere surface.
Assume there is a freshwater flux anomaly of a certain ampli-

tude δ F (ms −1) and given pattern F̃S that is applied for a time
t m (s). If we idealize the time dependence as a block function
B(t ;t m), then the total freshwater flux can be written as

FS(x, t ; tm) = γ F0 F̄S + δF F̃S(x)B(t ; tm) − Q(t) (2a)

B(t ; tm) = H (t) − H (t − tm) (2b)

where H is the Heaviside function and Q(t) is determined from∫
S

FSd2x = 0 ⇒ Q(t) = B(t ; tm)
δF

| S |
∫

S
F̃S(x)d2x (3)

and | S | is the surface area. The constraint (3) ensures overall salt
conservation. In case a land-based freshwater reservoir is sud-
denly drained into the ocean, such as perhaps during the Younger
Dryas, a net input of freshwater occurs; it can be represented by
adjusting the value of Q.

The TPR problem is concerned with the response of the ocean
circulation under different conditions determined by the spatial
pattern F̃S and the values of the parameters δ F and t m. This re-
sponse will also depend on the ocean model parameter values.
When there is only a single steady state for the values of the
parameters chosen, say indicated by A1, this state must be glob-
ally stable. This means that the ocean circulation is affected by
the anomalous freshwater forcing, but as soon as the forcing has
disappeared (i.e. for t > t m), the ocean flow will recover to the
original state A1.

However, when there are more stable equilibria, say states A1

and A2, the situation is different. When the anomalous forcing
is applied to the initial state A1, the state that is reached at =
t m may evolve towards the state A2 (for t > t m). In this way,
a transition takes place that can be viewed as a finite amplitude
instability of state A1. The central issue in the TPR problem is
how to determine whether this instability will occur and how the
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critical boundary depends on the time t m and the perturbation
strength δ F .

2.2. Finite amplitude perturbations

We approach the TPR problem by using the parameter depen-
dence of the equilibria. Consider in Fig. 1a typical bifurcation
diagram associated with thermohaline flows (Dijkstra 2000) in
one of the control parameters, say λ. Here the diagram is com-
puted from the Stommel (1961) two-box model, explained in
more detail in the next section. In other models, this parame-
ter may indicate the viscosity of the flow or the strength of the
surface freshwater flux.

Assume that the bifurcation diagram for δ F = 0 is represented
by the curve C 1 in Fig. 1. In addition, we can also consider the
same diagram for the case t m → ∞ when the forcing is given by

F̂ S(x) = γ F0 F̄S + δF F̃S(x) − Q (4)

where Q is a single scalar determined from eq. (3) with B(t ;t m) =
1. Because this forcing is steady, we can also calculate the bifur-
cation diagram for this case and a possible outcome is plotted as
the curve C 2 in Fig. 1.

Next, we define the stable state A1 on curve C 1 (for a particular
fixed value of λ) as the basic state. On this basic state we apply
the pulse forcing with amplitude δ F over a time t m. The model
trajectory can be quite complicated, but eventually a state I is
reached at t = t m; a possible outcome is indicated in Fig. 1. Note
that for t m → ∞ – a permanent freshwater anomaly – the stable
state B on the curve C 2 is reached.

Fig 1. Typical bifurcation diagram of the thermohaline circulation in
which the strength of the overturning circulation � is plotted versus a
measure of the freshwater flux λ (Stommel 1961). The two curves are
for different ratios of the surface restoring time-scales of salt and heat.

As a sidestep, a rough approximation of the state I can be
obtained in case the linear stability problem for the stable state
B can be solved. In that case, a normal mode approach provides
the eigenvalues and eigenvectors that control the evolution of
infinitesimally small perturbations on state B. Let the least stable
mode have a complex growth rate σ given by

σ = σr ± iσi (5)

with σ r < 0. The latter determines the attraction to state B along
part of its stable manifold. A rough approximation of a trajectory
that connects state A1 and B is then

u(x, t) = uA1 + (uB − uA1 )(1 − eσr t cos σi t) (6)

where u denotes the total state vector of the flow. Indeed, for
t = 0, this trajectory starts from state A1, it is attracted to state
B and reaches it for t → ∞. The vector u I of the state I is then
approximated by taking t = t m in eq. (6).

For t > t m, the forcing is again F̄S and only the equilibria
on the curve C 1 are relevant for the evolution of state I. For the
chosen value of λ, these are the original states A1 and A2 as well
as the unstable state S (Fig. 1). The evolution from state I may be
complex because the attraction domains of the states A1 and A2

can have a complicated (e.g. fractal) structure. However, one can
attempt to base the attraction domain on a single scalar quantity
by referring to basin-integrated quantities.

2.3. Energy principles

In many large-scale ocean flows, the effect of inertia can be
neglected and the energy of the flow is dominated by the available
potential energy, which is linked to the density anomalies ρ̃ of the
flow. This motivates us to define an energy functional E defined
as (Weijer and Dijkstra 2001)

E = 〈ρ̃2〉 (7)

where 〈.〉 indicates integration over the flow domain. If there are
two attracting states (i.e. A1 and A2 in Fig. 1), then two density
anomalies ρ̃i = ρAi − ρ, i = 1, 2 can be considered, with cor-
responding energy functionals Ei . In addition, the energy Es with
respect to the state S can be defined, with ρ̃s = ρS − ρ.

To determine whether state I will evolve back to A1 or will
change to state A2 for t > t m, one would need to have informa-
tion on the separatrix bounding the basin of attractors of both
equilibria. However, information is difficult to obtain, other than
that the unstable equilibrium S is necessarily on this separatrix.
Intuitively, however, one expects that the evolution of the trajec-
tory will be associated with changes in energy tendencies of the
above-defined functionals with a special role for the energy with
respect to the unstable state. We will demonstrate below that in
the relevant situations of the thermohaline circulation, the energy
functionals indeed may be useful as indicators of instability.

The TPR problem is then tackled by the following computa-
tional procedure.

Tellus 56A (2004), 4



THRESHOLDS OF THE OCEAN’S THERMOHALINE CIRCULATION 365

(i) For a chosen value of δ F , calculate the bifurcation di-
agrams in a relevant control parameter λ of the flow for both
the original forcing (F̄S) and the ‘permanent’ freshwater forcing
(F̂ S).

(ii) Choose a fixed value of λ and label one of the equilibria
(similar to A1) as initial state. Apply the forcing F̂ S (with t m

→ ∞) and compute the transient flow until equilibrium. This
trajectory will end up in a stable state on the bifurcation curve
for F̂ S (similar to state B).

(iii) Compute the energy functionals (with respect to the equi-
libria for F̄S) along the trajectory computed in the previous step.
The value of t m for which a transition will occur, say t∗

m, is
located near the point where the tendency of Es changes sign.

Consequently, when t m < t∗
m the trajectory will approach the

original state for t > t m, whereas a different state will be reached
when t m > t∗

m.

3. Application to a simple box model

To illustrate the approach, the theory is first applied to a two-
box model (Stommel 1961) of the thermohaline circulation. This
model is known to have multiple equilibria of which the structure
in parameter space is easily computed. The box model formu-
lation is presented in many textbooks (we use the notation in
chapter 3 of Dijkstra 2000) and the dimensionless equations be-
come

dT

dt
= η1 − T (1 + M(T − S)) (8a)

dS

dt
= η2 − S(η3 + M(T − S)) (8b)

where T = T e − T p, S = S e − Sp are the scaled tempera-
ture and salinity difference between the equatorial and polar
box, and � = T − S is the dimensionless flow rate. The func-
tion M indicates the modulus function. Three parameters appear
in eq. (8): the parameters η1 and η2 measure the strength of
the thermal forcing and of the freshwater forcing, respectively,
and η3 is the ratio of the relaxation times of temperature and
salinity.

As there is no spatial structure in the forcing, we will change
another parameter in addition to the freshwater flux amplitude
η2. In the example below, we choose to fix η1 = 3.0 and change
η3. For a ‘standard’ value of η3 = 0.4, the bifurcation diagram
is plotted in Fig. 2 as the curve with the ‘0.4’ label. As a norm
of the solution, the equator to pole (dimensionless) temperature
(Fig. 2a) and salinity (Fig. 2b) difference are taken. The saddle
node bifurcations occur at η2 = 1.19 and η2 = 1.36 and bound
the region of multiple equilibria. If we focus on a value η2 = 1.3,
then there are two stable states. The state A1 is called a thermally
driven state (or TH state) with � > 0 and the state A2 is called a
salinity-driven state (or SA state) with � < 0. Both are indicated
in Fig. 2 and also the unstable state S is labeled.

Fig 2. (a) Temperature and (b) salinity along the steady states of the
Stommel two-box model bifurcation diagram, with η1 = 3.0. Stable
steady states are indicated by solid curves, while curves of unstable
steady states are dashed.

The bifurcation diagram for η3 = 0.5 is also plotted in both
panels of Fig. 2. Although the bifurcation diagram is qualitatively
similar to that of η3 = 0.4, there is only one steady state for η2 =
1.3; this is a TH state, which is denoted B 1. Hence, a trajectory
starting at A1, evolving under conditions represented by η3 =
0.5, will be attracted to B 1. Because this state is also thermally
driven, the overturning is only slightly modified with respect
to that of A1. Similarly by changing η3 to 0.3, the bifurcation
diagram does not change qualitatively (Fig. 2). For η2 = 1.3,
there is only one steady (SA) state, which is labeled C 2. Now
a trajectory starting in A1 will be attracted to C 2, a state that
is qualitatively different from A1 and has equatorial sinking; a
collapse will occur.

Tellus 56A (2004), 4



366 H. A. DIJKSTRA ET AL.

Fig 3. Trajectories from the initial condition A1 for two different
values of η3 (η3 = 0.3 and η3 = 0.5): (a) temperature and (b) salinity.

Both types of trajectories are seen in Fig. 3: one under condi-
tions η3 = 0.5 (going from A1 to B 1) and one under conditions
η3 = 0.3 (going from A1 to C 2). From these trajectories, the
attraction properties of state B 1 and C 2 can be determined. The
time-scale of approach to the equilibrium is in agreement with
the eigenvalues computed at both states from a linear stability
analysis of state B 1 and C 2. In fact, the least stable mode of state
C 2 is an oscillatory mode, which can be seen as the oscillatory
behavior of the trajectory.

We now apply the pulse forcing to the system with η3 = 0.4
and η2 = 1.3. From t = 0 up to t = t m, the parameter η3 is
changed to either 0.3 or 0.5 and the initial development from
state A1 is computed. After t = t m, the parameter η3 is set back
to its original value of 0.4. This effectively mimics the TPR
problem, because a freshwater ‘forcing’ is introduced in eq. (8)
over the time interval [0, t m].

Fig 4. Trajectories for (a) η1 = 3.0, η2 = 1.3 and η3 = 0.5 and (b) η1

= 3.0, η2 = 1.3 and η3 = 0.3. The different curves are for different
dimensionless times t m.

In Fig. 4a, the temperature along the resulting trajectories is
plotted for different labeled values of t m for the case that η3

is set temporarily to 0.5. The lower ‘envelope’ of the curves
corresponds to the trajectory A1 → B 1 in Fig. 3a. The curves look
qualitatively very similar to those obtained in complex climate
models after a freshwater anomaly has been imposed (Manabe
and Stouffer 1995). As soon as the anomalous forcing is removed
at time t m, each trajectory approaches the state A1 for t → ∞.
This indicates that the anomaly is not able to ‘lure’ the trajectory
into the attraction domain of the state A2.

As could be expected, the situation is rather different for the
case η3 = 0.3. Up to a time t m ≤ t∗

m, the trajectories return to state
A1 as the ‘forcing’ is removed. However, for t m ≥ t∗

m a critical
threshold is passed and the trajectories are attracted to state A2; a
collapse of the thermally driven circulation occurs. The signature
of the oscillatory attraction of state A2 is here clearly visible.
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From Fig. 4b, we can conclude that t∗
m ∈ [4, 5] and by repeated

integrations it is found that t∗
m = 4.801. However, we would

like to have an estimate of this value by using the tendencies
of the energy functionals only along the trajectory A1 → C 2 in
Fig. 3a.

Because the stream function is linearly proportional to the
density, we define the dimensionless energy functional as

E = 1

2
(T̃ − S̃)2 (9)

where T̃ = T − T̄ , S̃ = S − S̄, and (T̄ , S̄) is one of the steady
states A1, A2 or S. In most models, these energy functionals can
be directly computed once the steady states are known.

For the special case of the two-box model, we can actually
calculate the tendencies of the energy functionals exactly. The
evolution equations for T̃ and S̃ are

dT̃

dt
= η1 − (T̄ + T̃ )(1 + M(�̄ + �̃)) (10a)

dS̃

dt
= η2 − (S̄ + S̃)(η3 + M(�̄ + �̃)). (10b)

By multiplying both eq. (10a) and eq. (10b) with T̃ and S̃, the
equation for dE/dt becomes

dE
dt

= I − D1 − D2 (11)

where I is an energy production term and Di represent dissipa-
tion effects (expressions not shown).

In most other models, we cannot compute the tendencies ex-
plicitly and hence we show for the box model only the energy
functionals computed directly from eq. (9). Along the trajecto-
ries in Fig. 3, the energy functionals with respect to the different
equilibria A1, A2 and S are plotted for the forcing with a tem-
porary value of η3 = 0.3 (Fig. 5a) and η3 = 0.5 (Fig. 5b). In
both cases, the trajectory is drifting away from A1 as the en-
ergy with respect to this equilibrium increases. For η3 = 0.5, the
energies with respect to A2 and S both increase and no transi-
tion behavior is expected. However, for η3 = 0.3, the tendency
of Es changes sign at t = 4.35. This gives an indication that,
for t > 4.35, the unstable steady state has been passed. This
value is close to the value of t∗

m as determined directly from the
model.

4. A global ocean–atmosphere model

Recently, it has become possible to compute bifurcation dia-
grams for ocean general circulation models. In Weijer et al.
(2003), this was done for a model of the global ocean that is
coupled to an energy balance model of the atmosphere. The gov-
erning equations of the ocean model are the hydrostatic, primitive
equations in spherical coordinates on a global domain, which in-
cludes full continental geometry as well as bottom topography.
The horizontal resolution is about 4◦, with a 96 × 38 grid on

Fig 5. Energy tendencies for the different steady states A1, A2 and S
along the trajectories in Fig. 3: (a) η3 = 0.3; (b) η3 = 0.5.

a domain [0, 360] × [ − 85.5, 85.5]. The grid has 12 levels in
the vertical and is non-equidistant with the most upper (lowest)
layer having a thickness of 50 m (1000 m), respectively.

Starting from the trivial state (at zero solar forcing, no fresh-
water flux and no wind stress) first an equilibrium state is deter-
mined under the annual-mean wind stress as in Trenberth et al.
(1989), an analytical form of the solar forcing and the Levitus
surface salinity distribution (Levitus et al. 1994). The freshwa-
ter flux of this reference solution is diagnosed and subsequently
used as part of the surface buoyancy forcing. Next, a steady
freshwater flux perturbation with an amplitude γ p (in Sv) is ap-
plied over a relatively small domain, sayD, in the North Atlantic
(D = {(φ, θ ) ∈ [300, 336] × [54, 66]}).

In Weijer et al. (2003), bifurcation diagrams were computed
in the two-parameter plane spanned by γ and γ p. The dimen-
sionless parameter γ indicates the strength of the diagnosed
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Fig 6. (a) Bifurcation diagrams for several values of γ p as curves of the maximum Atlantic meridional overturning versus the strength of the
diagnosed freshwater flux γ . Again stable states are indicated by solid curves and dashed curves indicate unstable states. (b) Pattern of the
meridional stream function in the Atlantic for the state B in (a). (c) Similar to (b) but for state C. (d) Similar to (b) but for state D.

freshwater flux. The case γ = 1 corresponds to the freshwa-
ter flux that is needed to maintain the Levitus surface salinity
field. The emergence of the multiple equilibrium regime with
changing freshwater flux can be seen by plotting bifurcation
diagrams for several fixed values of γ p (Fig. 6a) using γ as con-
trol parameter. For γ p = − 0.04 Sv, the overturning increases
with γ , while no multiple equilibria occur. For γ p = − 0.15 Sv,
however, two saddle-node bifurcations appear and a regime of
multiple equilibria exists. The Atlantic meridional overturning
stream functions of the solutions at the locations B, C and D
(γ = 1) are plotted in Figs 6b–d , respectively. State B still has
substantial northward sinking, while in state D northern sinking
is absent. In the unstable state C, the northern sinking is substan-
tially reduced but southern sinking is still relatively weak. For
γ p = − 0.23 Sv, the overturning decreases monotonically with
γ and there are no multiple equilibria. Only the collapsed state
E exists for γ = 1, with a meridional overturning pattern similar
to state D (Fig. 6d).

To illustrate the approach to the TPR problem in this model,
we focus on the bifurcation diagram for γ p = − 0.15 and fix
γ = 1. We take state B as the initial state and want to determine
the behavior of the system once an anomalous freshwater flux
forcing is applied (over the domain D) to this state. The bifur-
cation diagram then indicates that state B may collapse to state
D (Fig. 6). We choose δ F = − 0.08 Sv such that for a perma-
nent freshwater perturbation the bifurcation diagram is that for
γ p = − 0.23 Sv. Starting at state B, we change γ p from −0.15
to −0.23 at t = 0 and monitor the evolution of the flow. This
is shown as the solid curve in a plot (Fig. 7a) of the Atlantic
overturning versus time (in yr). Consistent with the bifurcation
diagrams in Fig. 6, after about 1000 yr the state E is approached.

Along this trajectory, we monitor the energy functionals
with respect to the states B, C and D (Fig. 7b). The energy EB

increases monotonically, whereas the tendency of the energy EC

changes sign near t = 250 yr. Hence, we expect this time to be
a good estimate of the critical time t∗

m. Indeed, when a simulation
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Fig 7. (a) Trajectories of the global model. The dashed curve starts at
state B and shows the time evolution under conditions γ p = − 0.23 for
t m = ∞; it ends up for t → ∞ in state E. The solid curve is for t m =
100 and the dash-dotted curve is for t m = 400. (b) Energy anomalies E
of the state along the dashed trajectory in (a) with respect to the states
B, C and D.

Fig 8. Sketch of the attractors in (a) the
original system where x 1 and x 2 are stable
fixed points and (b) the dynamical system
under a permanent freshwater anomaly
where only the state y is a stable fixed point.

is performed with t m = 100 yr, the Atlantic circulation recovers
after about 100 yr and state B is eventually reached (dashed curve
in Fig. 7b). When t m = 400 yr, the Atlantic overturning collapses
as seen in the dash-dotted curve in Fig. 7b. The trajectories for
the two other times t m (225 and 275 yr) show that t∗

m ∈ [225,
275]. Hence, the estimate of t∗

m from the tendency of the energy
functional EC is excellent.

Note that these results are meant here only to illustrate the
methodology and hence we do not put much emphasis on the
quantitative results. To obtain useful quantitative estimates of
the instability boundaries, the global model should be improved,
in particular in its representation of mixing processes.

5. Summary and discussion

Using simple ideas from bifurcation theory, an approach to the
TPR problem has been proposed. The central idea is summarized
in a more abstract context with help of Fig. 8. In Fig. 8a, two
stable fixed points x 1 and x 2 are sketched, which represent stable
ocean circulation patterns. In addition, there is an unstable state
(which is labeled here x s) that is characteristic for the hystere-
sis regime in global ocean circulation models (Rahmstorf 1995;
Weijer et al. 2003).

In a typical case, the changes in equilibrium states due to a
permanent freshwater anomaly, which is represented by a change
in parameters of the dynamical system, is as in Fig. 8b. Here,
there is only one stable state y, while the states x 1 and x 2 still
exist but not as equilibrium states. For example, starting at x 2 the
trajectory is attracted to state y after application of the anomalous
forcing over a time t m and, depending on t m, it ends up some-
where in phase space, say at z (Fig. 8b). The evolution of the
trajectory when the forcing is removed depends on whether this
point z is located ‘left’ (in the attraction basin of x 1) or ‘right’
(in the attraction basin of x 2) of the state x s of the original bi-
furcation diagram (Fig. 8a). In the case sketched here, the point
z is located ‘right’ of x s and hence the state x 2 will be reached
and no transition occurs. If z would be ‘left’ of x s, a transition
to x 1 occurs.
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While it is, in general, difficult to identify whether the un-
stable state is crossed at a time t < t m, we have proposed to
use energy functionals as indicators. The latter provide a global
norm of the difference of the time-dependent solution and the
known steady states. For the global model, this provides ade-
quate estimates of the time t∗

m and this indicates that the govern-
ing dynamics in phase space is ‘near two-dimensional’. As an
alternative indicator, one could also take the differences in the
Atlantic overturning between the transient solution and the equi-
libria. The strength of the Atlantic overturning of state C is about
4.8 Sv and this boundary is crossed at about t = 310 yr (Figs 6
and 7a).

Crucial for application of this procedure in ocean general
circulation models is the computation of the unstable steady
states. While for simple box models the unstable states are eas-
ily determined, large-scale ocean models which use explicit for-
ward time integration do not have this possibility. With tran-
sient flow computations, only stable equilibrium states can be
reached within these models. An implicit formulation of ocean
models, however, enables an efficient computation of these un-
stable steady states. This opens the way to use the method-
ology in this paper to solve the TPR problem in these mod-
els and obtain quantitative estimates of the type of freshwa-
ter anomalies that may induce a collapse of the thermohaline
circulation.

The threshold results are important to determine whether the
thermohaline circulation may collapse due to the increase in at-
mospheric CO2. Many climate models indicate that an increased
greenhouse gas concentration leads to freshwater anomalies on
the ocean surface, which subsequently affect the ocean circu-
lation. In Schmittner and Stocker (1999), it is found that with
higher emission rates the present thermohaline circulation is
more easily destabilized. This result is easily interpreted here: a
higher emission rate leads to a faster change in freshwater anoma-
lies and consequently the critical time for reaching the unstable
steady state decreases. The results will also be important for the
interpretation of relatively rapid climate changes as seen during
the last glacial period, such as the Dansgaard–Oeschger oscilla-
tions. Also here, changes in the Atlantic overturning circulation
due to freshwater perturbations are thought to be crucial (Alley
et al. 2003).
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